Freelance Software Developer (Kotlin) - AI Trainer
As an AI Tutor in Coding specializing in Kotlin development, the responsibilities include designing high-quality technical content, examples, and explanations demonstrating best practices in Kotlin development; collaborating with engineers to ensure accuracy and consistency across code samples, tutorials, and developer guides; exploring modern Kotlin frameworks and tools to create practical, real-world examples for learning and testing; and continuously refining content based on feedback, emerging patterns, and advances in the Kotlin ecosystem. The role also involves contributing to projects aligned with skills by creating training prompts and refining model responses to help shape the future of AI while ensuring technology benefits everyone.
AI / ML Solutions Engineer
The AI / ML Solutions Engineer at Anyscale is responsible for designing, implementing, and scaling machine learning and AI workloads using Ray and Anyscale directly with customers. This includes implementing production AI / ML workloads such as distributed model training, scalable inference and serving, and data preprocessing and feature pipelines. The role involves working hands-on with customer codebases to refactor or adapt existing workloads to Ray. The engineer advises customers on ML system architecture including application design for distributed execution, resource management and scaling strategies, and reliability, fault tolerance, and performance tuning. They guide customers through architectural and operational changes needed to adopt Ray and Anyscale effectively. Additionally, the engineer partners with customer MLE and MLOps teams to integrate Ray into existing platforms and workflows, supports CI/CD, monitoring, retraining, and operational best practices, and helps customers transition from experimentation to production-grade ML systems. They also enable customer teams through working sessions, design reviews, training delivery, and hands-on guidance, contribute feedback to product, engineering, and education teams, and help develop reference architectures, examples, and best practices based on real customer use cases.
Senior Software Engineer, Applied AI
As a Software Engineer working on AI systems, responsibilities include playing a foundational role in research, experimentation, and rapid improvement of AI systems to build a capable, reliable AI automation platform used worldwide in mission critical production environments. Tasks involve designing experiments and testing ideas to optimize key internal AI benchmarks, designing and improving evaluation frameworks to accelerate experimentation speed and direction, training, fine-tuning, and optimizing machine learning models, performing rigorous evaluation and testing for model accuracy, generalization, and performance, collaborating and contributing to core product development to enhance platform capabilities, and setting up observability and monitoring systems to safety check model behavior in critical settings.
Software Engineer, macOS Core Product - Intl, Non-USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a diverse range of use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture that improve the performance, latency, throughput, and efficiency of deployed models. Build tools to provide visibility into bottlenecks and sources of instability and design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - San Diego, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a diverse range of use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve the performance, latency, throughput, and efficiency of deployed models. Build tools to provide visibility into bottlenecks and sources of instability and design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - Virginia Beach, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for diverse use cases. Deploy and operate the core machine learning inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve performance, latency, throughput, and efficiency of deployed models. Build tools to identify bottlenecks and sources of instability, then design and implement solutions addressing the highest priority issues.
Software Engineer, macOS Core Product - Rialto, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to their customers for diverse use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve the performance, latency, throughput, and efficiency of deployed models. Build tools to gain visibility into bottlenecks and sources of instability and design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - Waco, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a diverse range of use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve the performance, latency, throughput, and efficiency of deployed models. Build tools to provide visibility into bottlenecks and sources of instability, and design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - South Bend, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a diverse range of use cases. Deploy and operate the core ML inference workloads for AI Voices serving pipeline. Introduce new techniques, tools, and architecture that improve the performance, latency, throughput, and efficiency of deployed models. Build tools to provide visibility into bottlenecks and sources of instability and then design and implement solutions to address the highest priority issues.
VP of Customer Strategy
As an AI Quality Assurance Intern, you will execute structured test plans for AI Agent implementations, validate that intents, entities, and workflows trigger correctly, identify behavioral inconsistencies, misclassifications, or hallucinations, review and validate AI-generated suggestions, summaries, and classifications, provide actionable feedback to improve intent models and redaction/PII handling, run bias, redaction, and transcription accuracy checks, spot patterns or emerging issues across test sets, and contribute ideas for improving internal QA processes and tools. You will help ensure that AI systems act as intended, follow correct business logic, and provide accurate and safe outputs to end users.
Access all 4,256 remote & onsite AI jobs.
Frequently Asked Questions
Need help with something? Here are our most frequently asked questions.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.