Freelance Electrical Engineer with Python Experience - AI Trainer
Contributors may design rigorous electrical engineering problems reflecting professional practice, evaluate AI solutions for correctness, assumptions, and constraints, validate calculations or simulations using Python (NumPy, Pandas, SciPy), improve AI reasoning to align with industry-standard logic, and apply structured scoring criteria to multi-step problems.
ML Engineer - NLP (m/f/d)
Take ownership for the full lifecycle of our models: design, training, evaluation, and deployment of our deep learning models in the space of speech recognition and NLP. Build and continuously improve deep learning models for speech recognition and natural language understanding that power our core product and help thousands of users. Develop and run large-scale self-supervised training pipelines, as well as low-latency inference systems for mobile devices.
Forward Deployed Engineer (FDE), Life Sciences - Munich
Design and ship production systems around models, owning integrations, data provenance, reliability, and on-call readiness across research, clinical, and operational workflows. Lead discovery and scoping from pre-sales through post-sales, translating ambiguous workflow needs into hypothesis-driven problem framing, system requirements, and an execution plan with measurable endpoints. Define and enforce launch criteria for regulated contexts, including validation evidence, audit readiness, outcome metrics, and drive delivery until sustained production impact is demonstrated. Build in sensitive scientific data environments where auditability, validation, and access controls shape architecture, operating procedures, and failure handling. Run evaluation loops that measure model and system quality against workflow-specific scientific benchmarks and use results to drive model and product changes. Distill deployment learnings into hardened primitives, reference architectures, validation templates, and benchmark harnesses that scale across regulated life sciences environments.
Infrastructure Engineer
Help users discover and master the Dataiku platform through user training, office hours, demos, and ongoing consultative support. Analyse and investigate various kinds of data and machine learning applications across industries and use cases. Provide strategic input to the customer and account teams that help our customers achieve success. Scope and co-develop production-level data science projects with our customers. Mentor and help educate data scientists and other customer team members to aid in career development and growth.
AI / ML Solutions Engineer
The AI / ML Solutions Engineer at Anyscale is responsible for designing, implementing, and scaling machine learning and AI workloads using Ray and Anyscale directly with customers. This includes implementing production AI / ML workloads such as distributed model training, scalable inference and serving, and data preprocessing and feature pipelines. The role involves working hands-on with customer codebases to refactor or adapt existing workloads to Ray. The engineer advises customers on ML system architecture including application design for distributed execution, resource management and scaling strategies, and reliability, fault tolerance, and performance tuning. They guide customers through architectural and operational changes needed to adopt Ray and Anyscale effectively. Additionally, the engineer partners with customer MLE and MLOps teams to integrate Ray into existing platforms and workflows, supports CI/CD, monitoring, retraining, and operational best practices, and helps customers transition from experimentation to production-grade ML systems. They also enable customer teams through working sessions, design reviews, training delivery, and hands-on guidance, contribute feedback to product, engineering, and education teams, and help develop reference architectures, examples, and best practices based on real customer use cases.
Software Engineer, macOS Core Product - Virginia Beach, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for diverse use cases. Deploy and operate the core machine learning inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve performance, latency, throughput, and efficiency of deployed models. Build tools to identify bottlenecks and sources of instability, then design and implement solutions addressing the highest priority issues.
Software Engineer, macOS Core Product - Rialto, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to their customers for diverse use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve the performance, latency, throughput, and efficiency of deployed models. Build tools to gain visibility into bottlenecks and sources of instability and design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - Waco, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a diverse range of use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve the performance, latency, throughput, and efficiency of deployed models. Build tools to provide visibility into bottlenecks and sources of instability, and design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - Berlin, Germany
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a variety of use cases. Deploy and operate the core machine learning inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve the performance, latency, throughput, and efficiency of deployed models. Build tools to identify bottlenecks and sources of instability, then design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - Hamburg, Germany
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a diverse range of use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture that improve the performance, latency, throughput, and efficiency of deployed models. Build tools to gain visibility into bottlenecks and sources of instability and then design and implement solutions to address the highest priority issues.
Access all 4,256 remote & onsite AI jobs.
Frequently Asked Questions
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.