AI / ML Solutions Engineer
The AI / ML Solutions Engineer at Anyscale is responsible for designing, implementing, and scaling machine learning and AI workloads using Ray and Anyscale directly with customers. This includes implementing production AI / ML workloads such as distributed model training, scalable inference and serving, and data preprocessing and feature pipelines. The role involves working hands-on with customer codebases to refactor or adapt existing workloads to Ray. The engineer advises customers on ML system architecture including application design for distributed execution, resource management and scaling strategies, and reliability, fault tolerance, and performance tuning. They guide customers through architectural and operational changes needed to adopt Ray and Anyscale effectively. Additionally, the engineer partners with customer MLE and MLOps teams to integrate Ray into existing platforms and workflows, supports CI/CD, monitoring, retraining, and operational best practices, and helps customers transition from experimentation to production-grade ML systems. They also enable customer teams through working sessions, design reviews, training delivery, and hands-on guidance, contribute feedback to product, engineering, and education teams, and help develop reference architectures, examples, and best practices based on real customer use cases.
Software Engineer, macOS Core Product - Virginia Beach, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for diverse use cases. Deploy and operate the core machine learning inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve performance, latency, throughput, and efficiency of deployed models. Build tools to identify bottlenecks and sources of instability, then design and implement solutions addressing the highest priority issues.
Software Engineer, macOS Core Product - Rialto, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to their customers for diverse use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve the performance, latency, throughput, and efficiency of deployed models. Build tools to gain visibility into bottlenecks and sources of instability and design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - Waco, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a diverse range of use cases. Deploy and operate the core ML inference workloads for the AI Voices serving pipeline. Introduce new techniques, tools, and architecture to improve the performance, latency, throughput, and efficiency of deployed models. Build tools to provide visibility into bottlenecks and sources of instability, and design and implement solutions to address the highest priority issues.
Software Engineer, macOS Core Product - South Bend, USA
Work alongside machine learning researchers, engineers, and product managers to bring AI Voices to customers for a diverse range of use cases. Deploy and operate the core ML inference workloads for AI Voices serving pipeline. Introduce new techniques, tools, and architecture that improve the performance, latency, throughput, and efficiency of deployed models. Build tools to provide visibility into bottlenecks and sources of instability and then design and implement solutions to address the highest priority issues.
Enterprise Account Executive - Italy
The AI Outcomes Manager will partner with executive sponsors and end users to identify high-impact use cases and turn them into measurable business outcomes on Glean. They will lead strategic reviews and advise customers on their AI roadmap to ensure maximum value from Glean's platform. The role involves translating business needs into clear problem statements, success metrics, and practical AI solutions while collaborating with Product and R&D to shape priorities. They will conduct discovery workshops, scope pilots, and guide rollouts to drive broad and deep adoption of the Glean platform. Additionally, they will design and build AI agents with and for customers, including rethinking and redesigning underlying business processes to maximize impact and usability. The manager will proactively identify expansion opportunities and drive engagement across teams and functions.
Senior AI Engineer - San Mateo, CA
The role involves training, evaluating, and monitoring new and improved LLMs and other algorithmic models. The engineer will test and deploy content moderation models in production and iterate based on real-world performance metrics and feedback loops. They are expected to develop medium to long-term vision for content understanding-related R&D, collaborating with management, product, policy & operations, and engineering teams. The position requires taking ownership of results delivered to customers, advocating for changes in approach where needed, and leading cross-functional execution.
First-Line Supervisors of Food Preparation and Serving Workers - AI Trainer (Contract)
The responsibilities include evaluating what AI models produce related to the field of food preparation and serving work, assessing content related to the field of work, delivering clear and structured feedback to improve the AI model's understanding of workplace tasks and language, developing prompts for AI models that reflect the field, and evaluating AI responses. The work is performed remotely and asynchronously with flexible hours, and involves leveraging professional experience in food preparation and serving supervision to train AI models.
Member of Technical Staff - ML Research Engineer; Multi-Modal - Audio
Invent and prototype new model architectures that optimize inference speed, including on edge devices; build and maintain evaluation suites for multimodal performance across a range of public and internal tasks; collaborate with the data and infrastructure teams to build scalable pipelines for ingesting and preprocessing large audio datasets; work with the infrastructure team to optimize model training across large-scale GPU clusters; contribute to publications, internal research documents, and thought leadership within the team and the broader ML community; collaborate with the applied research and business teams on client-specific use cases.
Software Engineer, Evaluation Frontend
As an Evaluation Frontend Software Engineer, you will design tools and visualizations that enable researchers and engineers to compare and analyse hundreds of model evaluations, including both data visualization tools and statistical tools to extract signal from noisy data. You will develop an understanding of the relative merits and limitations of each model evaluation and suggest new facets of model evaluation. Your work will involve collaborating closely with cross-functional teams, including researchers and engineers, to surface necessary insights for model development.
Access all 4,256 remote & onsite AI jobs.
Frequently Asked Questions
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.